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SUMMARY 
This paper presents an algorithm for two-dimensional steady viscoelastic flow simulation in which the 
solution of the momentum and continuity equations is decoupled from that of the constitutive equations. 
The governing equations are discretized by the finite element method, with 3 x 3 element subdivision for the 
stress field approximation. Non-consistent streamline upwinding is also used. Results are given for flow 
through a converging channel and through an abrupt planar 4: 1 contraction. 
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1. INTRODUCTION 

In recent years a number of attempts have been made to simulate viscoelastic flow by finite 
element discretization of the differential governing equations. Two particularly notable papers 
are those of Marchal and Crochet' and Luo and Tanner.z Marchal and Crochet used a coupled 
method in which the discretized governing equations are solved simultaneously for the full set of 
unknown variables (velocity, pressure and stresses). They employed a Newton iteration scheme. 
Element subdivision was used for the stress approximations and non-consistent streamline 
upwinding3 was used to stabilize the iterative scheme. Consistent streamline upwinding3 was 
found to be ineffective in this regard. 

Luo and Tanner2 used a decoupled method in which the solution of the flow equations 
(momentum conservation and continuity) is separated from that of the constitutive equations. 
The constitutive equations are thus solved with a fixed flow field, while the elastic extra stress 
appears as a pseudo-body force term in the momentum equations. Luo and Tanner used 
non-consistent streamline upwinding but did not use element subdivision. 

Luo and Tanner found that convergence failure occurred for Weissenberg number (We)  values 
greater than unity in the 4: 1 contraction problem. With 4 x 4 element subdivision Marchal and 
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Crochet found no indication of convergence failure in the 4:l contraction problem with the 
Oldroyd-B model.lV2 

In view of these results it is of interest to investigate the use of element subdivision in the 
decoupled method. Such a scheme is developed in this paper: 3 x 3 element subdivision is used for 
the stress approximations and non-consistent streamline upwinding is also used. 

2. GOVERNING EQUATIONS 

The governing equations employed are those of steady incompressible creeping flow of upper- 
convected Maxwell (UCM) and Oldroyd-B fluids in two dimensions.’,2 Body forces are neg- 
lected. These assumptions regarding the nature of the flow are reasonable in the context of 
polymer-processing operations, although there is evidence to suggest that the restriction to 
two-dimensional flow and/or steady flow may be connected with the convergence failure of 
iterative solution schemes. This evidence is discussed by Brown et d4 and Lawler et al.’ among 
others. 

The governing equations in dimensionless form are 

Vp- rV * (Vu + VuT) = V * T, (1) 

v . u = o ,  (3) 

T +  De%=(1 -r)(Vu+VuT), (2) 

V 
where p is pressure, u is velocity and T is the Maxwell extra stress tensor. T is the upper-convected 
derivative of T, defined by 

where i, j ,  rn= 1, 2; (xl, x2) denotes rectangular Cartesian co-ordinates and summation on 
repeated indices is assumed. De is the Deborah number defined by De = 1U/L, where U and L are 
respectively a characteristic velocity and length for the flow and 1 is the relaxation time of the 
fluid (i.e. the characteristic time for the fluid to return to its initial state after a sudden deformation 
is imposed). The symbol ‘r’ denotes the viscosity ratio, defined by r = qs/(qs + qm), where qm is the 
viscosity of the UCM fluid and qs is the viscosity of the Newtonian ‘solvent’. The UCM governing 
equations are obtained by putting r=O, while the Oldroyd-B case is given by r=O*ll.  The 
relation between Deborah number (De) and Weissenberg number (We) is given in Section 6. 

As explained by Luo and Tanner,’ the decoupled method requires a change of variable in the 
governing equations (1) and (2); this is to ensure that the discrete momentum equations always 
contain the real viscous term required to recover the Newtonian velocity-pressure formulation 
when De approaches zero. The extra stress T is decomposed as 

where 
T = S + R ,  

R=(1-r)(Vu+Vu’). 

In terms of S and R equations (1) and (2) become 

v p  - v . (VU + VUT) = v ’ s, 
V V 

S + DeS = - DeR. 

Equations (3) and (6)-(8) are the governing equations used in the decoupled algorithm. 
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3. FINITE ELEMENT DISCRETIZATION 

= 

A weak variational statement of the problem based on a weighted residual representation of the 
governing equations is obtained and the resulting functionals are discretized using finite element 
interpolation. The weighted residual statement of equation (7) is 

r 

r I- 

r 

[Vp - V * (VU + V U ~ ) ]  N d a =  (V * S)N da ,  J fi J fi (9) 

where N is a weighting function and R is the problem domain. The integrand on the LHS of 
equation (9) involves second-order derivatives of velocity. The velocity field is to be represented 
by quadratic interpolation functions, so in order to preserve interelement continuity, it is 
necessary to use Green's theorem in equation (9). This gives 

lfi [(Vp)N + (Vu + VuT) * VNldR = (Vu + VuT) - nN dT, (10) 

where n is the unit outward normal to the boundary r. 
The weighted residual statements of equations (3) and (8) are 

r 
Jn (V u)N dQ = 0, 

lfi (S + D&N dR = - jfi Dt&N dR. 

The unknown variables are approximated using finite element interpolation functions. VeIocity 
is approximated using nine-noded biquadratic elements, while pressure is approximated using the 
corresponding bilinear elements. The stresses are approximated using bilinear subelements 
obtained by 3 x 3 subdivision of the velocity-pressure elements. The approximate forms of u, 
p and T on element 'e' are given by 

ue=CuINI,  p e = C p K M K ,  Te=xTLML, 
I K L 

(13) 

where N I  and MK are biquadratic and bilinear shape functions respectively. The suffices I, K and 
L label the nodes of the respective elements. 

A Galerkin approximation to the weighted residual equations is now obtained by using the 
approximate forms (13). The biquadratic and bilinear basis functions are also used as weighting 
functions. The momentum and continuity equations give rise to a 22 x 22 elemental stiffness 
matrix which may be represented as follows: 

1 0 

(14) 
In equation (14) the subscripts I and J label the nine nodes of the biquadratic element, while 

K and L label the four nodes of the bilinear element. Partial differentiation with respect to x ( y )  is 
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denoted by subscript 'J' (subscript ',2'). Thejth velocity components at node J is denoted by u'J. 
Summation on repeated indices is assumed. The N l  and M L  are the weighting functions. The first 
two lines of the matrix correspond to the two components of the vector equation (lo), while the 
third line corresponds to equation (1 1). The components of the tensor (Vu + VuT) are denoted by 
d i j .  The domain of integration for element 'e' is denoted by a,, while re denotes the boundary of 
element 'e'. 

Isoparametric mapping is used to express the integrands in equation (14) in terms of local 
element co-ordinates6 and the integrals are then evaluated by Gaussian quadrature. The resulting 
elemental matrices and load vectors are then assembled and a frontal elimination/back-substitu- 
tion routine6 is used to solve the resulting system for the nodal unknowns uf and PK. 

In each iterative loop the stress fields are computed after the velocity field. The viscous stress 
R (equation (6)) is obtained by 'variational recovery'. This means that equation (6) is represented 
in Galerkin weighted residual form and the resulting system is solved for the nodal values of R. 
The elastic stress S is then computed using a Galerkin approximation to equation (12). The 
corresponding elemental stiffness equation may be represented as follows: 

I *  

0 

-De  u ' ~ M ~ M ~ ~ R  I 

2De uf2M,MJdR s 

2De ~ ~ ~ M , M ~ d f l  s 

s: I 

S:' 

S:' 

Non-consistent streamline upwinding, applied to the convective terms only, has been used in 
equation (15). The upwinded weighting functions are indicated by asterisks. They are given by, for 
element 'e', 

(16) 
+he 
14 

M:= MI $-u VMI, 

where IuJ is the magnitude of u, he is the element size function and q5 is a scaling factor. This 
technique has the effect of smoothing the oscillations which occur when the standard Galerkin 
method is used to solve convection-dominated equations. The element size function is given by 
he=,/[(x.c+x,,)2 + ( ~ , ~ + y , , ) ~ ] ,  where ( 5 , ~ )  are the element local co-ordinates. 

The elemental equations (15) are assembled and solved in the same manner as for equa- 
tions (14). 
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4. BOUNDARY CONDITIONS 

Some consideration must be given to the boundary integrals in equation (14). When the global 
matrix is assembled, the boundary integrals for all elemental boundary segments in the interior of 
the problem domain sum to zero. On the global domain boundary, two essential boundary 
condition values are given at each node, except for nodes which lie on the outlet part of the 
boundary or on an axis of symmetry (if there is one). In the assembled global stiffness matrix, any 
row corresponding to a degree of freedom for which an essential boundary constraint is specified 
will be eliminated in the solver routine. 

At each outlet node, one essential boundary constraint is given, namely zero velocity parallel to 
the boundary. For the normal direction a natural boundary condition must be given. The 
boundary integrand for the normal direction contains the factor d l j n j ,  i.e. the normal component 
of viscous traction. This may be set to zero, which is equivalent to assuming fully developed flow 
for a viscous fluid. In each flow domain which we consider, the outlet is placed at the end of 
a straight extension channel, so the assumption of fully developed flow is reasonable. 

At each node on a symmetry axis, zero normal velocity component is given, so the natural 
boundary condition in this case is zero viscous traction parallel to the axis. 

5. SOLUTION ALGORITHM 

The iterations start from the Newtonian creeping flow field obtained by solving the discrete forms 
of equations (3) and (7) with S=O.  The basic algorithm is as follows. 

Step 1. Read in Newtonian flow field. 
Step 2. Compute viscous stress field R (equation (6)). 
Step 3. Compute elastic stress field S (equation (8)). 
Step 4. Compute new flow field u, p (equation (7)). 

Repeat steps 2-4 until the solution converges. 

6. SAMPLE RESULTS 

Two test problems which have been investigated using the algorithm described above are (i) flow 
through a 30" planar converging half-channel and (ii) flow through a planar abrupt 4: 1 contrac- 
tion. These domains are of interest since they involve both shear and extensional flow and provide 
stringent tests of the algorithm. 

Converging channel 

Three meshes have been used for this problem. Figures l(a)-l(c) show the 3 x 3 subelement 
meshes used for the stress approximations. Mesh 1 has 612 elements, with 68 elements in the 
corresponding velocity-pressure meshes. Meshes 2 and 3 each have 918 elements, with 102 
elements in the corresponding velocity-pressure meshes. The inlet is at the wider end. The 
boundary conditions are as follows. 

(a) Wall boundary: no slip. 
(b) Flow axis: zero normal velocity, zero shear stress. 
(c) Inlet: zero tangential velocity, imposed normal velocity profile, imposed stresses. 
(d) Outlet: zero tangential velocity, natural boundary condition (zero normal viscous traction). 
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Some convergence limits are shown in Table I. The values quoted are those of the Weissenberg 
number defined by We = A?,, where 9, is the wall velocity gradient at the outlet. In the upwinded 
cases the value 4 = 1 is used for the upwinding scale factor. 

The use of the non-consistent streamline upwinding improves the performance of the iterative 
scheme, as does the use of Oldroyd-B rather than the UCM model. It was also found that the use 
of the SUPG formulation ', (i.e. consistent upwinding) did not improve the performance. In both 

Figure l(a). Mesh 1 (converging channel) 

Figure l(b). Mesh 2 (converging channel) 

Figure l(c). Mesh 3 (converging channel) 
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Figure l(d). Velocity vectors for converging channel UCM case at We= 1.6 

Table I. Convergence limits for converging channel 

Mesh 1 Mesh 2 Mesh 3 

UCM, upwinded 2.6 2.2 2.4 
Oldroyd-B, not upwinded 1.6 
Oldroyd-B, upwinded 3.3 

the converging channel and 4: 1 contraction problems, loss of convergence was associated with 
the loss of positive definiteness of the matrix 

(1 -r)I 
T,=T+- 

De ' 

where I is the unit matrix. All these findings are consistent with those of References 1 and 2. 
The convergence limits are lower for the more refined meshes 2 and 3 than they are for mesh 1. 

It was also found that higher convergence limits were obtained if element subdivision was not 
used for the stress representation. However, in that case the stress representation is much cruder 
than it is when element subdivision is used. The stress fields develop much larger gradients than 
do the velocity fields and so a more refined mesh is required to approximate them. The use of 
element subdivision permits this while minimizing the consequent increase in computational cost 
(since larger elements are still used for the velocity field). 

Note that mesh 3 gives a higher convergence limit than mesh 2; the design of mesh 3 permits 
a more accurate representation of the stress gradient close to the wall boundary. 

Figure l(d) shows an example of the velocity field obtained in the converging channel. This is as 
expected. As the convergence limit is approached, the instability of the numerical solution is less 
apparent in the velocity field than it is in the stress fields. 

Figure 2 shows the significant normal stress component T" plotted across the outlet for 
mesh 2 at We= 1.6. (T22 is very small at the outlet). 

The non-upwinded Oldroyd-B case (circles) gives a higher gradient near the wall than the 
upwinded case (triangles), while the upwinded UCM case (squares) gives a gradient lying between 
these two. This result is consistent with the convergence limits for the three cases given in Table I 
(under mesh 1). It is also consistent with the suggestion that one of the causes of convergence 
failure may be the inability of the element discretization to resolve steep stress gradients (as 
discussed in Reference 4). 
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Figure 2. Plots of TI1  for converging channel mesh 2 at We=1.6, taken across the outlet; circles, Oldroyd-B, not 
ugwinded; triangles; Oldroyd-B, upwinded; squares; UCM, upwinded 

Figure 3(a). Mesh 1 (4: 1 contraction) 

(b) 

Figure 3(b). Mesh 2 (4: 1 contraction) 

Figure 3(c). Velocity vectors for 4:1 contraction: UCM case at We=l 

Abrupt 4 :  1 contraction 

Two meshes have been used for this problem and are shown in Figures 3(a) and 3(b). As before, 
the 3 x 3 subelement meshes are shown. Mesh 1 has 324 elements, corresponding to 36 velo- 
city-pressure elements; mesh 2 has 405 elements, corresponding to 45 velocity-pressure elements. 
Boundary conditions are the same as for the converging channel problem. 
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Table 11. Convergence limits for 4: 1 contraction 

Mesh 1 Mesh 2 

UCM 1.7 1.6 
Oldroyd-B 1.75 

(a) (b) 

Figure 4. Plots of T" for 4 : l  contraction mesh 2 at We= 1, taken from inlet to outlet through the re-entrant corner 
(at x=8):  (a) Oldroyd-B, not upwinded; (b) Oldroyd-B, upwinded 

Some convergence limits are shown in Table 11. Non-consistent streamline upwinding (with 
$= 1) was used in each case. The limits shown here are lower than those of Reference 2, when 
convergence up to We = 5-5 was obtained for the planar 4: 1 contraction with the Oldroyd-B 
model. This may be because the velocity-pressure mesh used here is too coarse to accurately 
represent the steep pressure gradients at the re-entrant corner. 

Figure 3(c) shows a typical velocity field for the 4:l contraction; again this is as expected. 
Figures 4(a) and 4(b) show plots of T l 1  taken along the length of the channel from the inlet (x = 0) 
to the outlet (x = 16) and passing through the re-entrant corner (x = 8). These plots correspond to 
the sample solutions obtained for We= 1. Figures 4(a) and 4(b) are for the Oldroyd-B cases 
without and with upwinding respectively. The smoothing effect of the non-consistent streamline 
upwinding is clearly seen. 

7. CONCLUSIONS 

A decoupled finite element algorithm for steady two-dimensional flow simulation in viscoelastic 
fluids has been developed which incorporates subelement representation for the stress fields and 
non-consistent streamline upwinding. The algorithm has been tested in the context of the 
converging channel and 4: 1 contraction problems and convergence has been obtained for values 
of We greater than unity. 

The algorithm could be particularly useful as a basis for further developments. In view of the 
results reported in References 1 and 2, it would be of interest to investigate the use of higher levels 
of mesh refinement and of element subdivision arrangements other than those used so far. 
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